Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Gene Flow of a Forest-Dependent Bird across a Fragmented Landscape.

Identifieur interne : 001D51 ( Main/Exploration ); précédent : 001D50; suivant : 001D52

Gene Flow of a Forest-Dependent Bird across a Fragmented Landscape.

Auteurs : Rachael V. Adams [Canada] ; Theresa M. Burg [Canada]

Source :

RBID : pubmed:26580222

Descripteurs français

English descriptors

Abstract

Habitat loss and fragmentation can affect the persistence of populations by reducing connectivity and restricting the ability of individuals to disperse across landscapes. Dispersal corridors promote population connectivity and therefore play important roles in maintaining gene flow in natural populations inhabiting fragmented landscapes. In the prairies, forests are restricted to riparian areas along river systems which act as important dispersal corridors for forest dependent species across large expanses of unsuitable grassland habitat. However, natural and anthropogenic barriers within riparian systems have fragmented these forested habitats. In this study, we used microsatellite markers to assess the fine-scale genetic structure of a forest-dependent species, the black-capped chickadee (Poecile atricapillus), along 10 different river systems in Southern Alberta. Using a landscape genetic approach, landscape features (e.g., land cover) were found to have a significant effect on patterns of genetic differentiation. Populations are genetically structured as a result of natural breaks in continuous habitat at small spatial scales, but the artificial barriers we tested do not appear to restrict gene flow. Dispersal between rivers is impeded by grasslands, evident from isolation of nearby populations (~ 50 km apart), but also within river systems by large treeless canyons (>100 km). Significant population genetic differentiation within some rivers corresponded with zones of different cottonwood (riparian poplar) tree species and their hybrids. This study illustrates the importance of considering the impacts of habitat fragmentation at small spatial scales as well as other ecological processes to gain a better understanding of how organisms respond to their environmental connectivity. Here, even in a common and widespread songbird with high dispersal potential, small breaks in continuous habitats strongly influenced the spatial patterns of genetic variation.

DOI: 10.1371/journal.pone.0140938
PubMed: 26580222
PubMed Central: PMC4651334


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Gene Flow of a Forest-Dependent Bird across a Fragmented Landscape.</title>
<author>
<name sortKey="Adams, Rachael V" sort="Adams, Rachael V" uniqKey="Adams R" first="Rachael V" last="Adams">Rachael V. Adams</name>
<affiliation wicri:level="1">
<nlm:affiliation>University of Lethbridge, Department of Biological Sciences, Lethbridge, Alberta, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>University of Lethbridge, Department of Biological Sciences, Lethbridge, Alberta</wicri:regionArea>
<wicri:noRegion>Alberta</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Burg, Theresa M" sort="Burg, Theresa M" uniqKey="Burg T" first="Theresa M" last="Burg">Theresa M. Burg</name>
<affiliation wicri:level="1">
<nlm:affiliation>University of Lethbridge, Department of Biological Sciences, Lethbridge, Alberta, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>University of Lethbridge, Department of Biological Sciences, Lethbridge, Alberta</wicri:regionArea>
<wicri:noRegion>Alberta</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:26580222</idno>
<idno type="pmid">26580222</idno>
<idno type="doi">10.1371/journal.pone.0140938</idno>
<idno type="pmc">PMC4651334</idno>
<idno type="wicri:Area/Main/Corpus">001A24</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001A24</idno>
<idno type="wicri:Area/Main/Curation">001A24</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001A24</idno>
<idno type="wicri:Area/Main/Exploration">001A24</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Gene Flow of a Forest-Dependent Bird across a Fragmented Landscape.</title>
<author>
<name sortKey="Adams, Rachael V" sort="Adams, Rachael V" uniqKey="Adams R" first="Rachael V" last="Adams">Rachael V. Adams</name>
<affiliation wicri:level="1">
<nlm:affiliation>University of Lethbridge, Department of Biological Sciences, Lethbridge, Alberta, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>University of Lethbridge, Department of Biological Sciences, Lethbridge, Alberta</wicri:regionArea>
<wicri:noRegion>Alberta</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Burg, Theresa M" sort="Burg, Theresa M" uniqKey="Burg T" first="Theresa M" last="Burg">Theresa M. Burg</name>
<affiliation wicri:level="1">
<nlm:affiliation>University of Lethbridge, Department of Biological Sciences, Lethbridge, Alberta, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>University of Lethbridge, Department of Biological Sciences, Lethbridge, Alberta</wicri:regionArea>
<wicri:noRegion>Alberta</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Alberta (MeSH)</term>
<term>Animal Distribution (physiology)</term>
<term>Animals (MeSH)</term>
<term>Forests (MeSH)</term>
<term>Gene Flow (MeSH)</term>
<term>Genetic Variation (MeSH)</term>
<term>Microsatellite Repeats (MeSH)</term>
<term>Passeriformes (genetics)</term>
<term>Songbirds (genetics)</term>
<term>Trees (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Alberta (MeSH)</term>
<term>Animaux (MeSH)</term>
<term>Arbres (MeSH)</term>
<term>Flux des gènes (MeSH)</term>
<term>Forêts (MeSH)</term>
<term>Oiseaux chanteurs (génétique)</term>
<term>Passeriformes (génétique)</term>
<term>Répartition des animaux (physiologie)</term>
<term>Répétitions microsatellites (MeSH)</term>
<term>Variation génétique (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="geographic" xml:lang="en">
<term>Alberta</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Passeriformes</term>
<term>Songbirds</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Oiseaux chanteurs</term>
<term>Passeriformes</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Répartition des animaux</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Animal Distribution</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Forests</term>
<term>Gene Flow</term>
<term>Genetic Variation</term>
<term>Microsatellite Repeats</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Alberta</term>
<term>Animaux</term>
<term>Arbres</term>
<term>Flux des gènes</term>
<term>Forêts</term>
<term>Répétitions microsatellites</term>
<term>Variation génétique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Habitat loss and fragmentation can affect the persistence of populations by reducing connectivity and restricting the ability of individuals to disperse across landscapes. Dispersal corridors promote population connectivity and therefore play important roles in maintaining gene flow in natural populations inhabiting fragmented landscapes. In the prairies, forests are restricted to riparian areas along river systems which act as important dispersal corridors for forest dependent species across large expanses of unsuitable grassland habitat. However, natural and anthropogenic barriers within riparian systems have fragmented these forested habitats. In this study, we used microsatellite markers to assess the fine-scale genetic structure of a forest-dependent species, the black-capped chickadee (Poecile atricapillus), along 10 different river systems in Southern Alberta. Using a landscape genetic approach, landscape features (e.g., land cover) were found to have a significant effect on patterns of genetic differentiation. Populations are genetically structured as a result of natural breaks in continuous habitat at small spatial scales, but the artificial barriers we tested do not appear to restrict gene flow. Dispersal between rivers is impeded by grasslands, evident from isolation of nearby populations (~ 50 km apart), but also within river systems by large treeless canyons (>100 km). Significant population genetic differentiation within some rivers corresponded with zones of different cottonwood (riparian poplar) tree species and their hybrids. This study illustrates the importance of considering the impacts of habitat fragmentation at small spatial scales as well as other ecological processes to gain a better understanding of how organisms respond to their environmental connectivity. Here, even in a common and widespread songbird with high dispersal potential, small breaks in continuous habitats strongly influenced the spatial patterns of genetic variation. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26580222</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>06</Month>
<Day>17</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>10</Volume>
<Issue>11</Issue>
<PubDate>
<Year>2015</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>Gene Flow of a Forest-Dependent Bird across a Fragmented Landscape.</ArticleTitle>
<Pagination>
<MedlinePgn>e0140938</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0140938</ELocationID>
<Abstract>
<AbstractText>Habitat loss and fragmentation can affect the persistence of populations by reducing connectivity and restricting the ability of individuals to disperse across landscapes. Dispersal corridors promote population connectivity and therefore play important roles in maintaining gene flow in natural populations inhabiting fragmented landscapes. In the prairies, forests are restricted to riparian areas along river systems which act as important dispersal corridors for forest dependent species across large expanses of unsuitable grassland habitat. However, natural and anthropogenic barriers within riparian systems have fragmented these forested habitats. In this study, we used microsatellite markers to assess the fine-scale genetic structure of a forest-dependent species, the black-capped chickadee (Poecile atricapillus), along 10 different river systems in Southern Alberta. Using a landscape genetic approach, landscape features (e.g., land cover) were found to have a significant effect on patterns of genetic differentiation. Populations are genetically structured as a result of natural breaks in continuous habitat at small spatial scales, but the artificial barriers we tested do not appear to restrict gene flow. Dispersal between rivers is impeded by grasslands, evident from isolation of nearby populations (~ 50 km apart), but also within river systems by large treeless canyons (>100 km). Significant population genetic differentiation within some rivers corresponded with zones of different cottonwood (riparian poplar) tree species and their hybrids. This study illustrates the importance of considering the impacts of habitat fragmentation at small spatial scales as well as other ecological processes to gain a better understanding of how organisms respond to their environmental connectivity. Here, even in a common and widespread songbird with high dispersal potential, small breaks in continuous habitats strongly influenced the spatial patterns of genetic variation. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Adams</LastName>
<ForeName>Rachael V</ForeName>
<Initials>RV</Initials>
<AffiliationInfo>
<Affiliation>University of Lethbridge, Department of Biological Sciences, Lethbridge, Alberta, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Burg</LastName>
<ForeName>Theresa M</ForeName>
<Initials>TM</Initials>
<AffiliationInfo>
<Affiliation>University of Lethbridge, Department of Biological Sciences, Lethbridge, Alberta, Canada.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>11</Month>
<Day>18</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000416" MajorTopicYN="N" Type="Geographic">Alberta</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D063147" MajorTopicYN="N">Animal Distribution</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D065928" MajorTopicYN="N">Forests</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051456" MajorTopicYN="Y">Gene Flow</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014644" MajorTopicYN="N">Genetic Variation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018895" MajorTopicYN="N">Microsatellite Repeats</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046109" MajorTopicYN="N">Passeriformes</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020308" MajorTopicYN="N">Songbirds</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="N">Trees</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>04</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>09</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>11</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>11</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>6</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26580222</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0140938</ArticleId>
<ArticleId IdType="pii">PONE-D-15-18897</ArticleId>
<ArticleId IdType="pmc">PMC4651334</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Ecology. 2014 Jun;95(6):1556-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25039220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2001 May;10(5):1153-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11380874</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2003 Aug;164(4):1567-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12930761</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2008 Jun 1;24(11):1403-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18397895</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2000 Jun;155(2):945-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10835412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2005 Jul;14(8):2553-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15969734</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol Resour. 2010 Sep;10(5):831-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21565094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2007 Jan;16(2):313-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17217347</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genet. 2005 Mar 11;6:13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15760479</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2008 Dec;62(12):3027-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18752612</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2005 Jun;14(7):1925-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15910316</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2000 May;15(5):199-203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10782134</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Dec 16;105(50):19774-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19017794</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genet. 2010 Oct 15;11:94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20950446</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2012 Oct 1;28(19):2537-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22820204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2012 Aug;21(16):4010-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22738667</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Heredity (Edinb). 2015 Feb;114(2):143-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25074576</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2006 Jul;7(7):510-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16778835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2008 Sep;17(18):4015-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19238703</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1943 Mar;28(2):114-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17247074</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2016 Jan;209(2):832-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26346922</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2006 Aug;60(8):1551-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17017056</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2005 Jul;14(8):2611-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15969739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Appl. 1993 May;3(2):209-212</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27759328</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2009 Aug;96(8):1532-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21628298</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol Resour. 2008 Jan;8(1):103-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21585727</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2012 Sep;21(18):4486-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22882305</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2004 Aug;58(8):1839-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15446435</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2009;60:561-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19575590</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 1993 Feb;47(1):195-212</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28568102</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Heredity (Edinb). 2007 Mar;98(3):128-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17080024</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol Resour. 2010 May;10(3):556-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21565057</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2010 Jul 26;5(7):e11785</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20668690</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1997 Apr;145(4):1219-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9093870</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2010 Oct;19(19):4179-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20819159</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol Resour. 2010 May;10(3):564-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21565059</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
</country>
</list>
<tree>
<country name="Canada">
<noRegion>
<name sortKey="Adams, Rachael V" sort="Adams, Rachael V" uniqKey="Adams R" first="Rachael V" last="Adams">Rachael V. Adams</name>
</noRegion>
<name sortKey="Burg, Theresa M" sort="Burg, Theresa M" uniqKey="Burg T" first="Theresa M" last="Burg">Theresa M. Burg</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001D51 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001D51 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:26580222
   |texte=   Gene Flow of a Forest-Dependent Bird across a Fragmented Landscape.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:26580222" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020